-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
↳ QTRS
↳ DependencyPairsProof
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
F4(s1(x), s1(y), z, u) -> F4(x, u, z, u)
F4(s1(x), 0, z, u) -> F4(x, u, -2(z, s1(x)), u)
-12(s1(x), s1(y)) -> -12(x, y)
PERFECTP1(s1(x)) -> F4(x, s1(0), s1(x), s1(x))
<=12(s1(x), s1(y)) -> <=12(x, y)
F4(s1(x), 0, z, u) -> -12(z, s1(x))
F4(s1(x), s1(y), z, u) -> <=12(x, y)
F4(s1(x), s1(y), z, u) -> -12(y, x)
F4(s1(x), s1(y), z, u) -> IF3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
F4(s1(x), s1(y), z, u) -> F4(x, u, z, u)
F4(s1(x), 0, z, u) -> F4(x, u, -2(z, s1(x)), u)
-12(s1(x), s1(y)) -> -12(x, y)
PERFECTP1(s1(x)) -> F4(x, s1(0), s1(x), s1(x))
<=12(s1(x), s1(y)) -> <=12(x, y)
F4(s1(x), 0, z, u) -> -12(z, s1(x))
F4(s1(x), s1(y), z, u) -> <=12(x, y)
F4(s1(x), s1(y), z, u) -> -12(y, x)
F4(s1(x), s1(y), z, u) -> IF3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
<=12(s1(x), s1(y)) -> <=12(x, y)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
<=12(s1(x), s1(y)) -> <=12(x, y)
POL(<=12(x1, x2)) = 2·x1 + 2·x2
POL(s1(x1)) = 2 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
-12(s1(x), s1(y)) -> -12(x, y)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
-12(s1(x), s1(y)) -> -12(x, y)
POL(-12(x1, x2)) = 2·x1 + 2·x2
POL(s1(x1)) = 2 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
F4(s1(x), s1(y), z, u) -> F4(x, u, z, u)
F4(s1(x), 0, z, u) -> F4(x, u, -2(z, s1(x)), u)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F4(s1(x), s1(y), z, u) -> F4(x, u, z, u)
F4(s1(x), 0, z, u) -> F4(x, u, -2(z, s1(x)), u)
Used ordering: Polynomial interpretation [21]:
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
POL(-2(x1, x2)) = 0
POL(0) = 0
POL(F4(x1, x2, x3, x4)) = 2·x1
POL(s1(x1)) = 3 + 3·x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F4(s1(x), s1(y), z, u) -> F4(s1(x), -2(y, x), z, u)
POL(-2(x1, x2)) = x1
POL(0) = 0
POL(F4(x1, x2, x3, x4)) = 2·x2
POL(s1(x1)) = 3 + 3·x1
-2(s1(x), s1(y)) -> -2(x, y)
-2(x, 0) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
-2(x, 0) -> x
-2(s1(x), s1(y)) -> -2(x, y)
<=2(0, y) -> true
<=2(s1(x), 0) -> false
<=2(s1(x), s1(y)) -> <=2(x, y)
if3(true, x, y) -> x
if3(false, x, y) -> y
perfectp1(0) -> false
perfectp1(s1(x)) -> f4(x, s1(0), s1(x), s1(x))
f4(0, y, 0, u) -> true
f4(0, y, s1(z), u) -> false
f4(s1(x), 0, z, u) -> f4(x, u, -2(z, s1(x)), u)
f4(s1(x), s1(y), z, u) -> if3(<=2(x, y), f4(s1(x), -2(y, x), z, u), f4(x, u, z, u))